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Abstract. This paper is a study of the one-dimensional global optimization problem for continuously
differentiable functions. We propose a variant of the so-called P-algorithm, originally proposed for
a Wiener process model of an unknown objective function. The original algorithm has proven to be
quite effective for global search, though it is not efficient for the local component of the optimization
search if the objective function is smooth near the global minimizer. In this paper we construct
a P-algorithm for a stochastic model of continuously differentiable functions, namely the once-
integrated Wiener process. This process is continuously differentiable, but nowhere does it have a
second derivative. We prove convergence properties of the algorithm.
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1. Introduction

The first statistical model used for construction of global optimization algorithms
was the Wiener process (Kushner, 1964; Archetti and Betrò, 1979;Z̆ilinskas, 1985;
Ritter, 1990; Locatelli and Schoen, 1995; Locatelli, 1997). This model may be
considered as a worst case statistical model because its sample functions, although
continuous, are nowhere differentiable with probability one. Many researchers re-
gard the nondifferentiability of the model functions as a drawback. An advantage of
the Wiener model is the simplicity of implementation of the so called P-algorithm
which was introduced in Kushner (1964) and justified inZ̆ilinskas (1985). The
simplicity of the calculations stems from the Markov property of the Wiener pro-
cess. Experimental testing has demonstrated the efficiency of the global search
of the Wiener model-based P-algorithm (Törn andZ̆ilinskas, 1989), but the local
search is inefficient for smooth objective functions. The natural idea of extending
the P-algorithm to new models was prevented by computational difficulties.

Recently the authors proposed an approximated version of the P-algorithm for
a smooth function model, proved its convergence and gave an estimate of the con-
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vergence rate (Calvin and̆Zilinskas, 2000). The latter model is a stationary process
whose sample functions are twice continuously differentiable. To understand how
much the smoothness of the sample functions of the model influence the features
of the P-algorithm it is important to investigate a P-algorithm for an intermediate
model of once-continuously differentiable functions.

A natural family of stochastic models for exploring the effect of smoothness on
the performance of numerical algorithms is the family ofr-times integrated Wiener
processes, forr > 0. These processes induce a measure onCr ([0,1]), called the
r-fold Wiener measure (Novak and Ritter, 1993). In this paper we consider only
the caser = 1.

The sample functions of the integrated Wiener process are continuously differ-
entiable but are nowhere twice differentiable. The advantage of this model is the
Markov property of the vector process whose components are the function value
and its derivative. Because of this feature we are able to construct a computationally
tractable P-algorithm using derivatives of an objective function.

In Section 2 the P-algorithm for the integrated Wiener process is constructed
along with the associated calculations. In Section 3 a simplified version is de-
scribed. Convergence properties of this simplified algorithm are studied in Sections
4 and 5. Section 6 presents the results of some numerical experiments that comple-
ment our theoretical results. The conditional distribution of the integrated Wiener
process is derived in the Appendix.

2. The P-Algorithm

In this section we begin by giving a rather general description of a P-algorithm;
later we establish the particular form it takes for the stochastic model of this paper.

We suppose the objective functionY is to be minimized over the unit interval.
For our setup we start with a priori information thatY is a member of some class
of functions, for exampleY might be continuous or continuously differentiable.
The additional information needed to form an approximation is obtained by se-
quentially choosing points{tn} ⊂ [0,1] at which to observe some information
aboutY . In this paper the information will be the function value and (sometimes)
derivatives. We assume that the information is exact; that is, the observations are
not corrupted by noise. We allow each new observation point to depend on all the
previous information, so our general algorithm chooses the pointtn+1 according to
some rule

tn+1 = hn+1
(
ti , Y (ti), Y

′(ti), i 6 n
)

for some functionhn+1.
The method we will describe makes use of derivative information and so is

suitable for differentiable objective functions. The simplified version introduced in
the next section does not use derivative information and is thus suitable for general
continuous functions.
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Denote the ordered observations after the firstn by tn0 < tn1 < · · · < tnn , and the
corresponding observed function and derivative values byyni = Y (tni ) andxni =
Y ′(tni ). Denote byM the global minimum ofY , and letMn be the minimum of the
conditional mean of the function given the firstn observations. The general scheme
of the P-algorithm is to choose the next pointtn+1 to maximize the conditional
probability thatY (tn+1) is less thanMn−εn for some sequence of positive numbers
εn, given the information of the firstn observations. The outline of the algorithm is
given by the following pseudocode.

P-algorithm(n,{εn}, Y ,X)

1 y0← Y (0), x0← X(0)
2 min← y0

3 for k← 0 to n− 1 do
4 tk+1← argmaxP(Y (t)<min−εk+1|xi, yi, i 6 k)
5 yk+1← Y (tk+1), xk+1← Y ′(tk+1)

6 if yk+1 < min then min← yk+1

7 return min

For this scheme to be practical, it must be feasible to calculate the conditional
distributions for the particular stochastic model under consideration.

We will now specialize to the model of the integrated Wiener process. LetX =
{X(t) : 06 t 6 1} be a Wiener process, and fort ∈ [0,1], set

Y (t) =
∫ t

s=0
X(s) ds.

The measure induced onC1([0,1]) byY is the one-fold Wiener measure, which we
denote byP . Two sample functions of this process are depicted in Figure 1. Since
the trajectories ofX are continuous and nowhere differentiable with probability
one, the paths ofY are continuously differentiable and nowhere twice differenti-
able. Lett∗ be the (almost surely unique) point in[0,1] whereY attains its global
minimum.

The processZ(t) = (X(t), Y (t)) is a Markov process. If we observe the value
of X and Y at the pointst1, t2, . . . , tn, then the distribution ofZ at any point
depends only on the values observed at the nearest observation points to the left
and to the right of the point; i.e., fortni−1 < t < tni ,

P
(
X(t) 6 x, Y (t) 6 y |X(tnj ), Y (tnj ), j 6 n

)
= P (X(t) 6 x, Y (t) 6 y |X(tnj ), Y (tnj ), j = i − 1, i

)
.

In the Appendix we work out the conditional distributions. Let us consider the con-
ditional distribution of(X(t), Y (t)), for t ∈ (tni−1, t

n
i ), givenX(tni−1) = x1, Y (ti−1) =
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Figure 1. Sample paths of integrated Wiener process.

y1, andX(ti) = x2, Y (ti) = y2. To simplify the expressions, make the substitutions
s = t − tni−1 andT = tni − tni−1. Setting

µx = 6(s2 − sT )(y1− y2)+ 3T s2(x1+ x2)− 2sT 2x2− 4sT 2x1+ T 3x1

T 3

µy = s2(2s − 3T )(y1− y2)+ s3T (x1+ x2)

T 3

−s
2T 2(2x1 + x2)− T 3sx1 − T 3y1

T 3

σ 2
x =

s(T − s)
T 3

(3s2 − 3sT + T 2)

σ 2
y =

s3(T − s)3
3T 3

ρ =
√

3(2s − T )2
4(3s2 − 3sT + T 2)

,

we have that the conditional distribution ofX(t) is N(µx, σ 2
x ), the conditional

distribution ofY (t) isN(µy, σ 2
y ), and the correlation betweenX(t) andY (t) is ρ.

We are ready to describe the P-algorithm for the integrated Wiener process. Let
{εn} be a fixed sequence of positive numbers. The(n + 1)st point is chosen to
maximize the probability

P
(
Y (t) < Mn − εn |X(tni ), Y (tni ), i 6 n

)
.
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To determine how the next point is chosen according to this algorithm, we perform
the calculations for an interval[0, t], and choose the best points in the interval. In
light of the Markov property and time-homogeneity, it suffices to do the calcula-
tions for the interval[0, t], with endpoint valuesX(0) = x1, Y (0) = y1, X(t) =
x2, Y (t) = y2. Therefore, let us now suppose that we want to choose the point
s ∈ (0, t) to maximize

P(Y (s) < c |X(0) = x1, Y (0) = y1, X(t) = x2, Y (t) = y2) =
8

(
−st (t − s)

2x1− s2t (t − s)x2 + (2s3 − 3s2t + t3)y1+ (3s2t − 2s3)y2− ct3
t3
√
s3(t − s)3/3t3

)
,

wherec = Mn − εn and8 is the normal cumulative distribution function. This is
equivalent to choosings ∈ (0, t) to maximize

t3
√
s3(t − s)3/3t3

st (t − s)2x1 − s2t (t − s)x2 + (2s3 − 3s2t + t3)y1 + (3s2t − 2s3)y2 − ct3 ,
(2.1)

or, normalizing by the substitutionr = s/t , chooser ∈ (0,1) to maximize

t3/2
√
r3(1− r)3

t[r(1− r)][(1− r)x1 − rx2] + (2r3 − 3r2 + 1)y1+ (3r2− 2r3)y2 − c .
(2.2)

Setting the derivative of this last expression to 0 implies that

p(r) = t (x1− x2)r
3 + (tx2− 2tx1 + 3y1 − 3y2)r

2

+(6c + tx1 − 6y1)r − 3c + 3y1

= 0.

The maximizerr0 can be found by comparing the value in (2.2) at the roots ofp.
(If the maximizer is not unique, choose the maximizer nearest the midpoint of the
interval.) We call the maximum of (2.2) thecriterion valueof the interval[0, t].

After these preliminary calculations we can precisely state the general algorithm.
For each subinterval[tni−1, t

n
i ], i = 1,2, . . . , n, find theri0 that maximizes (2.2)

(with c replaced byMn − εn andt replaced bytni − tni−1)), and the criterion value.
Choose the interval with the largest criterion value,[tnj−1, t

n
j ], say, and settn+1 =

tnj−1+ rj0 (tnj − tnj−1).
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3. Simplified P-Algorithm

As t ↓ 0, the factor oft in the denominator of (2.2) approaches 0. Ignoring that
term the criterion becomes

t3/2
√
r3(1− r)3

(2r3 − 3r2 + 1)y1+ (3r2 − 2r3)y2−Mn + εn . (3.3)

In this section we study this simplified algorithm, which can be thought of as
the original algorithm but ignoring the derivatives. To maximize this simplified
criterion we solve for the roots of

3(y1 − y2)r
2 − 6(y1 −Mn + εn)r + 3(y1 −Mn + εn) = 0.

The root in(0,1) is

1

1+
√
y2−Mn+εn
y1−Mn+εn

.

Substituting this into the expression for the criterion yields

t3/2

((y1 −Mn + εn)(y2−Mn + εn))1/4
(√
y1 −Mn + εn +√y2 −Mn + εn

) .
Since we are only concerned with the order of the criterion values in choosing new
subintervals, we can apply an increasing function to the criterion values. Raising
the values to the power 2/3 gives

t

((y1 −Mn + εn)(y2−Mn + εn))1/6
(√
y1 −Mn + εn +√y2 −Mn + εn

)2/3 .
Thus the criterion that we maximize at each step of the algorithm is

γ ni =
(tni − tni−1)

(√
yni−1 −Mn + εn +

√
yni −Mn + εn

)−2/3

(yni−1 −Mn + εn)1/6(yni −Mn + εn)1/6 . (3.4)

Let γ n = maxi6n γ ni . The simplified algorithm works by choosing the subinterval
[tni−1, t

n
i ] with the largest criterion value and then choosing the next observation at

the pointtni−1 + τn(tni − tni−1), where

τn = 1

1+
√

yni −Mn+εn
yni−1−Mn+εn

.

While the criterion values are different, the formula forτn is the same as for the
smooth function model in Calvin and̆Zilinskas (2000).
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4. Convergence Rate

In this section we consider the convergence rate of the simplified algorithm with
constantεn = ε>0. From the definition of the criteria at (3.4),

γ ni

tni − tni−1

(
yni−1 −Mn + ε

)1/3 (
yni −Mn + ε

)1/3
=

(√
yni−1 −Mn + ε +

√
yni −Mn + ε

)−2/3

(yni−1 −Mn + ε)1/6(yni −Mn + ε)1/6
· (yni−1 −Mn + ε

)1/3 (
yni −Mn + ε

)1/3
→ 2−2/3.

Therefore,

lim
n→∞

n∑
i=1

γ ni =
∫ 1

t=0

dt

(2(Y (t)−M + ε))2/3 .

In the limit asn → ∞, the γ ni do not change for intervals that do not get
a new observation, and for the interval that gets the new observation the twoγ

values for the two subintervals are aboutγ n/2. This is becauseτn → 1/2, and
since the function values at the endpoints hardly change, theγ values for the
two subintervals are about half that of the original interval. Therefore, theγ for
a particular interval eventually becomes the maximumγ n, and a new observation
point is added approximately at the midpoint of this interval. This shows that the
sequence of observation points is dense in[0,1], and the method converges.

In order to establish the convergence rate, letγ ns be the criterion value for the
subinterval containing the global minimizer, and letT ns denote the width of that
interval, so that

γ ns =
T ns
(√
yni−1−Mn + ε +

√
yni −Mn + ε

)−2/3

(yni−1−Mn + ε)1/6(yni −Mn + ε)1/6 . (4.5)

We can stop the search whenγ ns is approximately equal to the average. More
precisely, letnk be thekth time thatγ ns crosses the average of theγ ni ’s from below;
see (Calvin, 1999) for a more detailed description. Then

lim
k→∞ nk T

nk
s = (2ε)2/3

∫ 1

t=0

dt

(2(Y (t)−M + ε))2/3 . (4.6)

For arbitrary random variables{Un}, {Vn}, we use the notationUn = OP(Vn) to
indicate thatUn/Vn is bounded in probability; that is, for anyε>0 there existsMε

andNε such that

P (−Mε < Un/Vn < Mε) > 1− ε
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for n > Nε .
Let tnR and tnL be the nearest observation points to the right and left oft∗,

respectively. By the mean value theorem,

Y (t∗ + h)− Y (t∗) = X(t∗ + θh) · h
for someθ ∈ [0,1]. Since max06s6h X(s) = OP

(
h1/2

)
, this implies the bound

1nk = Mnk −M
6 min{Y (tnR)− Y (t∗), Y (tnL)− Y (t∗)}
6 T nks max

|s|6T nkS
X(t∗ + s)

= OP (T
nk
s )

3/2.

Thus

nk
3/21nk = OP

(
nkT

nk
s

)3/2 = OP

(∫ 1

t=0

(
1+ Y (t)−M

ε

)−2/3
)3/2

(4.7)

by (4.6).
It is interesting to compare (4.7) with similar bounds for P-algorithms based on

the Wiener process (Calvin, 1999) and based on a smooth Gaussian process model
(Calvin andZ̆ilinskas, 2000). IfY is a Wiener process, then

nk
1/21nk = OP

(∫ 1

t=0

(
1+ Y (t)−M

ε

)−2
)1/2

.

If Y is twice continuously differentiable withY ′′ (t∗) > 0, then with the algorithm
defined in Calvin and̆Zilinskas (2000),

nk
21nk = OP

(∫ 1

t=0

(
1+ Y (t)−M

ε

)−1/2
)2

.

(See the references for the exact definitions of the algorithms and the stopping
times{nk}.)

5. Decreasing Sequenceεn

The basic convergence rate estimated in the previous section is the same (in terms
of the number of observationsn) as a simple uniform grid of observations (of
course, by decreasingε the constant factor in the convergence rate can be made
arbitrarily small). Our goal in this section is to investigate the possibility of im-
proving the order of convergence by replacing the fixedε by a positive sequence
of numbersεn converging to 0. We must determine a convergence rate that is slow
enough to maintain the global convergence of the algorithm.
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THEOREM 5.1. Let {εn} be a sequence of positive numbers converging to0 such
that n3/2εn → ∞. Then the algorithm described above will converge for any
continuous objective function.

Proof The algorithm converges for any continuous function if and only if the obser-
vation sequence is dense in the unit interval. We will construct a subsequence{nk}
such thatγ nk → 0. It can be easily seen that the existence of such a subsequence
implies the density of the observation sequence.

Let ωn = mini6n tni − tni−1 denote the length of the shortest interval formed
by the observations 1 throughn (soωn 6 1/n), and letnk be thekth time that a
new observation results in a new smallest interval; that is, at timenk an interval of
width, say,̃ωnk is to be split, with its smallest child then having widthωnk+1. Letyl
andyr denote the function values at the left and right endpoints, respectively (we
suppress the indexnk). Using this notation, the maximum criterion at timenk is

γ nk = ω̃nk
(√
yl −Mnk + εnk +

√
yr −Mnk + εnk

)−2/3

(yl −Mnk + εnk )1/6(yr −Mnk + εnk )1/6
. (5.8)

Let y = max(yr , yl) andy = min (yr , yl). By straightforward calculation,

min{τnk ,1− τnk } =
1

1+
√
y−Mnk

+εnk
y−Mnk

+εnk

.

Since a new minimum interval is being formed,

ωnk+1 = ω̃nk min{τnk ,1− τnk } = ω̃nk
1

1+
√
y−Mnk

+εnk
y−Mnk

+εnk

6 1

nk
, (5.9)

which yields the inequality

ω̃nk 6
1

nk

(
1+

√
y −Mnk + εnk
y −Mnk + εnk

)
.
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Substituting this into the expression for the criterion (5.8) gives

γ nk

6
1
nk

(
1+

√
y−Mnk

+εnk
y−Mnk

+εnk

)(√
y −Mnk + εnk +

√
y −Mnk + εnk

)−2/3

(y −Mnk + εnk )1/6(y −Mnk + εnk )1/6

=
1
nk

(√
y −Mnk + εnk +

√
y −Mnk + εnk

)1/3

(y −Mnk + εnk )2/3(y −Mnk + εnk )1/6

= 1

nk


√
y −Mnk + εnk +

√
y −Mnk + εnk

(y −Mnk + εnk )2(y −Mnk + εnk )1/2

1/3

= 1

nk

(
1

(y −Mnk + εnk )3/2(y −Mnk + εnk )1/2

+ 1

(y −Mnk + εnk )2
)1/3

6 1

nk

(
2

ε2
nk

)1/3

→ 0

if nkε
2/3
nk →∞. This completes the proof.

There are numerous technical difficulties in estimating the convergence rate for
the algorithm with decreasing sequence{εn}. In the next section we examine the
efficiency of the approach with numerical examples.

6. Numerical Experiments

The integrated Wiener process is a well-suited statistical model for the construction
of global optimization algorithms which involve derivatives in addition to objective
function values. Theoretically the efficiency of the constructed algorithms may be
compared with the efficiency of other algorithms by means of investigation of their
convergence rate. However, from the practical point of view it is no less interesting
to have some assessments for a moderate number of observations. Such assess-
ments may be performed experimentally. The goal of our experimental testing
was to evaluate the benefit of derivatives in construction of global optimization
algorithms based on statistical models. It might be expected that derivative inform-
ation would improve the efficiency of the search at least in the vicinity of local
minima. The computational resources saved in this way would be used for the
global search, thus improving the overall efficiency of the algorithm.

Two versions of the algorithm were considered: the basic version with deriv-
atives (which we call theexact algorithm), and the simplified version without
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derivatives (which we call theapproximatealgorithm). Versions of the P-algorithm
with fixed and decreasingεn have been implemented for both models.

For the first experiment the sample functions of a discrete-time version of the
processY (t)were used as the test functions. The values ofX(i/N), i = 0,1, · · · , N,
N = 1000, were generated using independent Gaussian increments. The values of
Y (t) at the same points were obtained by means of numerical integration ofX. The
values ofX(t), Y (t), ti 6 t < ti+1, ti = i/N were substituted by the conditional
means ofX(t), Y (t), given (X(ti), Y (ti), X(ti+1), Y (ti+1)); such a substitution is
justified by the Markov property of (X(t), Y (t)).

One hundred randomly generated sample functions were minimized over the
feasible interval 06 t 6 1. Each function was minimized by both versions of
the algorithm with constant valueε = 0.01. The average error afterk function (and
derivatives for the exact algorithm) evaluations is presented in Table 1. The average
value of the sample function minima was−0.2319.

Table 1.

n 10 20 30 40

Exact 0.0001 0.0000 0.0000 0.0000

Approx. 0.0004 0.0001 0.0001 0.0000

Since the global minimum is identified to reasonable precision after 20 to 40
function (and derivative) evaluations these functions may be considered easy to
optimize. For this model the use of derivatives seems to give little benefit.

Let us now consider a different set of random test functions corresponding to the
stationary Gaussian processξ(t) with correlation functionρ(τ) = exp{−(τ/30)2};
this process has mean 0 and unit variance. The sample functions were generated
using an approximate spectral expansion

Y (t) =
20∑
k=1

(Uk cos(30(ωk − 0.1) · t)+ Vk sin(30(ωk − 0.1) · t )) , (6.10)

06 t 6 1,

whereωk = k/5, Uk and Vk are independent Gaussian random variables with
mean 0 and varianceDk = 0.2 exp{− (ωk − 0.1)2 /4}. An example of a sample
function is presented in Figure 2. One hundred functions generated according to
(6.10) were minimized by means of both versions of the algorithm. The constant
valueεn = 0.01 was used. The sample mean and sample variance of the minima
of the generated functions were−2.1344 and 0.2646, respectively. The average
error aftern function (for exact also derivative) evaluations is multiplied by 100
and presented in Table 2.
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Figure 2. Representative sample path.

Table 2.

n 10 20 30 50 70 100 150 200

Exact 52.02 15.57 5.222 0.0193 0.0086 0.0031 0.0016 0.0007

Approx 50.35 15.44 2.445 0.2326 0.0100 0.0046 0.0018 0.0011

For these more complicated functions the global minimum with four decimal
digits precision is found after 50–70 function (and derivative) evaluations. Also for
these objective functions the use of derivatives does not seem helpful.

Common sense arguments recommend starting the search with the most global
strategy. During the search the globality should be reduced to complete the search
with a local refinement of the best found local minima. The effect of localiza-
tion may be achieved by means of a decreasing sequence{εn} (Z̆ilinskas, 1985).
To evaluate the practical efficiency of such a decreasing sequence the following
experiment was carried out. The same previous one-hundred random functions
generated according to (6.10) were minimized withε = 0.05/

√
n. The average

errors multiplied by 100 are presented in Table 3.

Table 3.

n 10 20 30 50 70 100 150 200

Exact 45.73 15.34 3.427 0.0109 0.0048 0.0016 0.0006 0.0003

Approx 55.54 14.92 4.209 0.0218 0.0056 0.0020 0.0007 0.0004
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Comparing the results of Tables 2 and 3 we may conclude that the use of a
decreasing sequenceεn may more significantly improve the efficiency than the use
of derivatives. The advantage of a decreasing sequenceεn is more significant for the
approximate model based algorithm than for the exact model based algorithm. The
experiments were carried out with different constantε and decreasing sequences
εn. The best results are obtained choosingε in the interval 0.5–5 per cent of the
range of function values (which is generally unknown and must be estimated). The
average error is almost constant with respect to changes ofε in such an interval.
The empirically justified sequenceεn = 5ε/

√
n has a similar robustness property.

To illustrate the behavior of the algorithm on familiar test functions the follow-
ing functions (Locatelli, 1997), (Törn and̆Zilinskas, 1989) were minimized:

f1(x) = −
5∑
i=1

sin((i + 1)x + i), −106 x 6 10,

f2(x) = (x + sin(x))e−t
2
, −106 x 6 10.

Both functions represent specific difficulties discussed for example in Törn and
Z̆ilinskas (1989). The range of values of the first test function is 20, and choosing
one per cent of this value,ε = 0.2 was chosen for the version of the algorithm with
fixed ε. According to the recommendations given above the sequenceεn = ε/√n
was chosen. For the second function the range of function values was estimated as
1, implying ε = 0.01 andεn = 0.05ε/

√
n correspondingly. Minimization errors

of both functions aftern observations are presented in Tables 4 and 5 respectively.
These results confirm that the use of derivatives in the algorithms considered in
this paper does not seem prospective. A decreasing sequence{εn} normally grants
better results than the constantε.

Table 4.

n 10 20 30 40 50

Exact, fixedε 2.7538 2.7638 0.0003 0.0003 0.0003

Exact, variableεn 4.4163 3.6931 1.0723 0.0003 0.0003

Approx., fixedε 9.4007 2.5703 2.5703 0.2601 0.0002

Approx., variableεn 0.3709 0.2561 0.2561 0.0000 0.0000

An alternative to considering the error after a fixed number of function evalu-
ations is to fix an error tolerance and then consider the number of function eval-
uations needed to attain the tolerance. We tested the same algorithms using this
criterion with the same two test functions used previously as well as two new test
functions, taken from Törn and̆Zilinskas, (1989), defined by

f3(x) = sin(x)+ sin(10x/3) + log(x)− 0.84x+ 3, 2.7 6 x 6 7.5,

f4(x) = sin(x)+ sin(2x/3), 3.1 6 x 6 20.4.
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Table 5.

n 10 20 30 40 50

Exact, fixedε 0.8242 0.8175 0.2196 0.0015 0.0000

Exact, variableεn 0.8241 0.2917 0.0000 0.0000 0.0000

Approx., fixedε 0.8183 0.4850 0.0395 0.0000 0.0000

Approx., variableεn 0.8183 0.4268 0.0011 0.0011 0.0001

In Tables 6–9 we report the number of function evaluations needed to reach the
given error tolerance for each of the test functionsf1–f4. In each case we used
ε = 0.01 andεn = 0.05/

√
n. Taken as a whole, the experiments seem to indicate

that the exact algorithm performs a bit better than the approximate, and using a
decreasing sequence{εn} is better than the fixedε (though these conclusions do
not hold in all examples).

Table 6. Number of evaluations to reach tolerance forf1

Tolerance 10−1 10−2 10−3 10−4 10−5

Exact, fixedε 25 29 34 81 81

Exact, variableεn 23 26 29 58 58

Approx., fixedε 17 30 30 75 75

Approx., variableεn 15 17 17 47 47

Table 7. Number of evaluations to reach tolerance forf2

Tolerance 10−1 10−2 10−3 10−4 10−5

Exact, fixedε 25 28 28 47 47

Exact, variableεn 22 26 27 27 27

Approx., fixedε 28 30 33 33 33

Approx., variableεn 24 26 41 41 90

Appendix

In this appendix we derive the conditional distribution of the integrated Wiener
processY given function and derivative values at a set of points.
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Table 8. Number of evaluations to reach tolerance forf3

Tolerance 10−1 10−2 10−3 10−4 10−5

Exact, fixedε 11 11 11 11 11

Exact, variableεn 8 8 8 42 42

Approx., fixedε 9 12 36 36 120

Approx., variableεn 9 11 18 18 82

Table 9. Number of evaluations to reach tolerance forf4

Tolerance 10−1 10−2 10−3 10−4 10−5

Exact, fixedε 13 13 20 20 105

Exact, variableεn 10 12 12 12 57

Approx., fixedε 12 14 19 19 92

Approx., variableεn 10 11 16 16 69

Recall the definition of the Markov processZ(t) = (X(t), Y (t)),0 6 t 6 1.
Denote its (homogeneous) transition density byph:

ph ((x1, y1), (x2, y2))

= P (X(t + h) ∈ dx2, Y (t + h) ∈ dy2 |X(t) = x1, Y (t) = y1) /dx2 dy2.

GivenX(t) = x1, Y (t) = y1, the distribution ofX(t + h) is normal with meanx1

and varianceh. Conditional onX(t + h) = x2,

Y (t + h) = y1+
∫ h

s=0
X(t + s) ds

= y1+
∫ h

s=0

(
x1 + s

h
(x2 − x1)+ B(s)

)
ds

= y1+ h2(x1+ x2)+
∫ h

s=0
B(s) ds,

whereB is a Brownian bridge of durationh (that is, a Brownian motion conditioned
to take the value 0 at timeh). Now∫ h

s=0
B(s) ds
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is normally distributed with mean 0 and varianceh3/12. Therefore

ph ((x1, y1), (x2, y2))

=
√

3

πh2
exp

(
−4h2x2

1 + 4h2x2
2 + 4h2x1x2 + 12(y2 − y1)

2

2h3

+12h(x1 + x2)(y2− y1)

2h3

)
.

We will need the conditional density of(X(s), Y (s)), conditional onX(0) =
x1, Y (0) = y1 andX(t) = x2, Y (t) = y2, which is given by

ps ((x1, y1), (x, y)) pt−s ((x, y), (x2, y2))

pt ((x1, y1), (x2, y2))

=
√

3 t2

πs2(t − s)2 exp(

− 2t

s(t − s)

(
x − 6(s2 − st)(y1 − y2)+ 3ts2(x1+ x2)− 2st2x2 − 4st2x1+ t3x1

t3

)2

+6t (t − 2s)

s2(t − s)2

(
x − 6(s2 − st)(y1 − y2)+ 3ts2(x1 + x2)− 2st2x2 − 4st2x1+ t3x1

t3

)
(
y − 2s3(y1 − y2)+ s3t (x1+ x2)− s2t2(2x1 + x2)− 3s2t (y1− y2)+ t3sx1 + t3y1

t3

)

−6t (3s2 − 3st + t2)
s3(t − s)3

·
(
y − s

2(2s − 3t)(y1 − y2)+ s3t (x1+ x2)− s2t2(2x1 + x2)+ t3sx1 + t3y1

t3

)2
 .

Letting

µx = 6(s2 − st)(y1 − y2)+ 3ts2(x1+ x2)− 2st2x2− 4st2x1+ t3x1

t3

µy = s2(2s − 3t)(y1 − y2)+ s3t (x1 + x2)− s2t2(2x1 + x2)+ t3sx1 + t3y1

t3

σ 2
x =

s(t − s)
t3

(3s2 − 3st + t2)

σ 2
y =

s3(t − s)3
3t3

ρ =
√

3(2s − t)2
4(3s2 − 3st + t2) ,
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we have that conditional density ofX(s) isN(µx, σ 2
x ) and the conditional density

of Y (s) isN(µy, σ 2
y ), and the correlation coefficient isρ. Thus

cov(X, Y ) = (2s − t)s2(t − s)2
2t3

.
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